A universal sequence of integers generating balanced Steinhaus figures modulo an odd number

نویسنده

  • Jonathan Chappelon
چکیده

In this paper, we partially solve an open problem, due to J. C. Molluzzo in 1976, on the existence of balanced Steinhaus triangles modulo a positive integer n, that are Steinhaus triangles containing all the elements of Z/nZ with the same multiplicity. For every odd number n, we build an orbit in Z/nZ, by the linear cellular automaton generating the Pascal triangle modulo n, which contains infinitely many balanced Steinhaus triangles. This orbit, in Z/nZ, is obtained from an integer sequence said to be universal. We show that there exist balanced Steinhaus triangles for at least 2/3 of the admissible sizes, in the case where n is an odd prime power. Other balanced Steinhaus figures, as Steinhaus trapezoids, generalized Pascal triangles, Pascal trapezoids or lozenges, also appear in the orbit of the universal sequence modulo n odd. We prove the existence of balanced generalized Pascal triangles for at least 2/3 of the admissible sizes, in the case where n is an odd prime power, and the existence of balanced lozenges for all the admissible sizes, in the case where n is a square-free odd number.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regular Steinhaus graphs of odd degree

A Steinhaus matrix is a binary square matrix of size n which is symmetric, with diagonal of zeros, and whose upper-triangular coefficients satisfy ai,j = ai−1,j−1+ai−1,j for all 2 6 i < j 6 n. Steinhaus matrices are determined by their first row. A Steinhaus graph is a simple graph whose adjacency matrix is a Steinhaus matrix. We give a short new proof of a theorem, due to Dymacek, which states...

متن کامل

Universal Mixed Sums of Squares and Triangular Numbers

In 1997 Ken Ono and K. Soundararajan [Invent. Math. 130(1997)] proved that under the generalized Riemann hypothesis any positive odd integer greater than 2719 can be represented by the famous Ramanujan form x 2 + y 2 + 10z 2 , equivalently the form 2x 2 + 5y 2 + 4T z represents all integers greater than 1359, where T z denotes the triangular number z(z + 1)/2. Given positive integers a, b, c we...

متن کامل

On Almost Universal Mixed Sums of Squares and Triangular Numbers

In 1997 K. Ono and K. Soundararajan [Invent. Math. 130(1997)] proved that under the generalized Riemann hypothesis any positive odd integer greater than 2719 can be represented by the famous Ramanujan form x2 + y2+10z2; equivalently the form 2x+5y+4Tz represents all integers greater than 1359, where Tz denotes the triangular number z(z+1)/2. Given positive integers a, b, c we employ modular for...

متن کامل

ON THE MULTIPLICATIVE ORDER OF a MODULO n

Let n be a positive integer and αn be the arithmetic function which assigns the multiplicative order of an modulo n to every integer a coprime to n and vanishes elsewhere. Similarly, let βn assign the projective multiplicative order of a n modulo n to every integer a coprime to n and vanish elsewhere. In this paper, we present a study of these two arithmetic functions. In particular, we prove t...

متن کامل

On a Problem of Molluzzo concerning Steinhaus Triangles in Finite Cyclic Groups

Let X be a finite sequence of length m > 1 in Z/nZ. The derived sequence ∂Xof X is the sequence of length m − 1 obtained by pairwise adding consecutive terms of X. The collection of iterated derived sequences of X, until length 1 is reached, determines a triangle, the Steinhaus triangle ∆X generated by the sequence X. We say that X is balanced if its Steinhaus triangle ∆X contains each element ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 118  شماره 

صفحات  -

تاریخ انتشار 2011